If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.024x^2+0.55x=0
a = 0.024; b = 0.55; c = 0;
Δ = b2-4ac
Δ = 0.552-4·0.024·0
Δ = 0.3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.55)-\sqrt{0.3025}}{2*0.024}=\frac{-0.55-\sqrt{0.3025}}{0.048} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.55)+\sqrt{0.3025}}{2*0.024}=\frac{-0.55+\sqrt{0.3025}}{0.048} $
| -6x-5=95 | | 7^x-4=49 | | (x-8)^2=81 | | 6x^2+30x+300=0 | | (x-8)^=81 | | X^6-7x-8=0 | | -5.1t^2-5t+60=0 | | .33333(6x-9)=(-3) | | 5(x+1)-10x=25 | | 4x4+7x2–2=0 | | 22=x+x+x+x+x+7 | | 1/5p=5/8-2.5 | | |4x-7|=x+1 | | (2x-6)/4=3 | | 6k+23=95 | | 4(b-77)=92 | | −7=z4+1 | | 23=m/3+19 | | -4y(y+3)=-4y+20 | | q/5+37=46 | | 5E+06x-38392=616856 | | 1x/10=-5 | | -8.4=1.5x | | 4/y-3=6/y+2 | | 1x/10=-15 | | 239.25=7.25x | | h-88/3=4 | | 14=c/4+12 | | 18=2b+2 | | 4x-40=-6x | | s/3+12=14 | | n/4+4=8 |